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Drying with superheated steam: maximum drying
rate as a linear function of pressure
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Abstract

Drying with superheated steam (SS) as heating agent is controlled through three operative variables, the steam temperature, the recycle
velocity, and the system pressure. Once the other conditions are fixed, there is an optimum pressure at which drying rate reaches its
maximum value. The exact optimum conditions can be found through a differential mass and energy balance over the heat exchange area,
resulting in two equations. The first one to calculate the drying rate as function of the operating conditions and the second one to find the
values of those conditions which make the operation optimum. Then, using these equations, this paper shows that the relationship between
maximum drying rate and pressure can be rewritten in a unique linear equation. Experiments were performed in a model system to obtain
a family of drying rates versus pressure curves, and in accordance with the predicted behaviour, it was observed that all maximum drying
rates lay on a straight line. © 2002 Elsevier Science B.V. All rights reserved.
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1. Introduction

It has been experimentally observed and also formally
proved [1] that the drying rate with superheated steam (SS)
always increases with steam temperature and recycle veloc-
ity, but for these two parameters given, there is an optimum
pressure at which drying rate reaches its maximum value.
This maximum occurs between two pressures for which
drying rate becomes zero. The first value is zero pressure,
because in this case the SS density is also zero. The sec-
ond value is the pressure at which the sample equilibrium
temperature is equal to the SS temperature, because in this
case the thermal driving force is null.

The exact optimum conditions also depend on the char-
acteristics of the drier, and in order to find them a differ-
ential mass and energy balance must be solved over the
heat exchange area. The mathematical derivation results in
two equations, one to calculate the drying rate as a func-
tion of the operating conditions and the other one to find
the optimum set of those conditions, such that the max-
imum drying rate can be found by combining these two
equations. However, though the method is mathematically
exact, the optimum condition equation is not explicit and
the procedure is arduous.

In this paper, it is shown that for all other conditions
given, the maximum drying rate is a linear function of the
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pressure, that is having defined the steam velocity and tem-
perature, the value of pressure which makes the evaporating
rate maximum is easily calculated.

2. Theory

Fig. 1 shows a schematic diagram of a SS drying pro-
cess. A certain mass, F of SS flows over the wet sample
transferring part of its sensible heat, Q. This amount of
energy produces evaporation at a rate of m kg s−1 of water
that leaves the sample as vapour and joins the SS main
flow. To maintain constant the process conditions, SS is
continuously recycled so that heat is replaced and vapour
produced by evaporation is withdrawn.

Heat is transferred from the SS to the sample under the
driving force imposed by the difference between the SS tem-
perature, TSS, and the sample equilibrium temperature, Teq,
and can be expressed by the well known transfer equation:

Q = AU(TSS − T eq) (1)

where A is the sample external area and U the overall heat
transfer coefficient.

Drying rate is a direct function of the heat transferred
upon the water latent heat of vaporisation, �H:

m = Q

�H
(2)

The value of Q as given by Eq. (1) changes along the drying
because SS temperature decreases as it crosses the drying
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Nomenclature

A sample external area (m2)
Cp mean SS heat capacity (J kg−1 K−1)
Cv

p mean removed vapour heat capacity
(J kg−1 K−1)

F superheated steam flow rate (kg s−1)
h external heat transfer coefficient (J m−2 K−1)
H enthalpy (J kg−1)
�H vapour latent heat of vaporisation

(J kg−1)
K factor in Eq. (18) (s2 m−2)
m drying rate (kg s−1)
N relative variation of h with pressure
Nq dimensionless number
P pressure (Pa = N m−2)
Q heat (W)
R universal gas constant (J mol−2 K−1)
RNq dimensionless function
S volume normal section (m−2)
SS acronym for superheated steam
T temperature (K)
U overall heat transfer coefficient (W m−2 K−1)
v linear velocity (m s−1)
W water molecular weight (kg mol−1)

Greek symbol
ϕ heat transfer coefficient factor

Subscripts
i inlet
m mean value
max maximum value
o outlet
op optimum value
SS superheated steam

Superscript
eq equilibrium value

section and also the local heat transfer coefficient changes
with geometry and sample conditions. In order to apply
this equation, a mass and energy balance was written over
a differential control volume as it is shown in Fig. 2. This
control volume includes the outer portion of the sample
already dried at a given instant of the process, in which
hygroscopic equilibrium has been reached and no further
evaporation occurs. This has been named the “dry layer”.

The heat released by the SS as it flows along the volume
length causes its temperature to decrease such that Ti >

To, and correspondingly mass flow rate increases due to the
water vapour released by the sample, such that Fo > Fi.

Steady state is assumed (SS temperature varies very
slowly with time so any change can be neglected), and for

the purpose of this study it is assumed adiabatic behaviour
(drying zone is perfectly isolated). Now, neglecting SS
potential and kinetic energy changes, macroscopic mass
and energy balances for non-isothermal flow system are the
following [2]:

Fi + m = Fo (3)

FiHi + mHeq = FoHo + Q (4)

where Hi and Ho are the SS local enthalpies and Heq is the
vapour enthalpy at Teq, the equilibrium temperature of the
wet sample.

Superheated steam pressure is assumed approximately
constant through all drying zone. Under such a condition,
the difference between inlet and outlet SS enthalpies can
be calculated as a mean value of SS heat capacity (Cp)
multiplied by the difference between inlet and outlet SS
temperature [3]:

Hi − Ho = Cp(Ti − To) (5)

In order to combine mass and energy balances in one equa-
tion, Fo from Eq. (3) is replaced into Eq. (4), SS enthalpy
difference is replaced by Eq. (5) (a similar relation is used
for the difference on removed vapour enthalpy), and m is
related to Q through Eq. (2):

FiCp(Ti − To) = Q

[
1 + Cv

p(To − T eq)

�H

]
(6)

where Cv
p is the mean value of water vapour heat capacity.

Using the same procedure, mass and energy balance is
recalculated using Fo instead of Fi, and dividing both bal-
ances the relation between inlet and outlet SS mass flows is
obtained as follows:

Fo

Fi
= 1 + Cv

p(Ti − T eq)/�H

1 + Cv
p(To − T eq)/�H

≈ 1 (7)

For most practical purposes, it is Cv
p(TSS − T eq) � �H ,

hence it can be assumed that SS mass flow is approximately
constant, i.e. F i ≈ F o ≈ F .

Now, Eqs. (1) and (6) are applied to a differential area
(such that the temperature difference is replaced by a tem-
perature differential (T o − T i = −dTSS), and total heat and
area become differential heat (Q = dQ) and area (A = dA),
and then combined. The resulting differential equation is
integrated over the entire exchange surface, and assuming
F ≈ constant and neglecting the dependence of heat capac-
ity on temperature, the following equation results:

AUm

FCp

= ln

(
1 + Cv

p(To − T eq)/�H

1 + Cv
p(Ti − T eq)/�H

Ti − T eq

To − T eq

)
(8)

where Um is the mean overall heat transfer coefficient.
Finally, combining Eqs. (2), (6) and (8), Eq. (9) is

obtained, which shows that drying rate m is function of F
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Fig. 1. Schematic diagram of superheated steam drying process.

(constant), Teq, �H, Cp, Ti, and a dimensionless number
Nq, related to the cooling effects on the SS:

m = FCp(Ti − T eq)

�H
(1 − e−Nq) (9)

Factor Nq relates the amount of heat transferred by convec-
tion to the amount of heat transported by the SS as sensible
heat, and it is defined in Eq. (10):

Nq = AUm

FCp

(10)

And assuming that Cv
p(TSS −T eq) � �H , Eqs. (8) and (10)

lead to show that the SS temperatures and Nq number are
related by means of Eq. (11):

Nq ≈ ln

(
Ti − T eq

To − T eq

)
(11)

Ideal gas behaviour can be assumed at the prevailing pres-
sure. Hence, the SS flow, F can be calculated by means of
Eq. (12):

F = S
W

R

vPSS

TSS
(12)

where S is the drier normal section; W the water molec-
ular weight; PSS, v, and TSS are the SS pressure, linear
velocity, and temperature, respectively; R is the universal
gas constant.

Fig. 2. Heat and vapour transfer in a differential portion of the system.

From Eqs. (9) and (12), it follows that there are two pres-
sure values at which the drying rate is zero. The first one
is P SS = 0, because it makes F = 0 in Eq. (12), and no
operation takes place. The second value is that which makes
T eq = T i. Between those two points must be at least one
pressure at which the drying rate reaches a maximum.

Elustondo [1] derived expression (13) which represents
the condition at which maximum drying rate is obtained.
For all operating parameters fixed, including Ti, Teq is
defined, and in turn PSS is defined representing the optimal
SS pressure:

Ti ≈ R

W�H

[
(T eq)2

1 −RNq(1 − ϕN)

]
+ T eq (13)

In this condition, there are two new dimensionless param-
eters (ϕ and N) and a new dimensionless function (RNq).
The first parameter (ϕ) is a relation between the mean over-
all heat transfer coefficient Um, and the mean value surface
heat transfer coefficient hm:

ϕ = Um

hm
(14)

The second parameter (N) is the relative variation of hm with
pressure:

N = PSS

hm

∂hm

∂PSS
(15)
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Finally, the new function (RNq) is exclusively a function of
the dimensionless number Nq:

RNq = Nq e−Nq

1 − e−Nq
(16)

In order to calculate the maximum drying rate, expressed as
the maximum vapour evolved from the sample per unit time,
mmax, condition (13) is replaced into Eq. (9), and Eq. (12)
is applied at the drying zone entrance. The result shows that
the maximum drying rate is directly proportional to the inlet
sectional area, Si, the inlet recycle velocity, vi, and the SS
pressure which becomes optimum, Pop:

mmax = KSiviPop (17)

where the proportion factor K is calculated by means of
Eq. (18):

K = Cp

(�H)2

(T eq)2

Ti

1 − e−Nq

1 −RNq(1 − ϕN)
(18)

This factor is almost independent of temperature, for relation
(Teq)2/Ti is balanced since Ti in Eq. (13) is a quadratic func-
tion of Teq and T’s are absolute. On the other hand, while Nq
varies from 0 to ∞, factor e−Nq and functionRNq only vary
from 1 to 0, hence K could be expected to be approximately
constant under a large number of operating conditions.

Fig. 3. Experimental superheated steam drying equipment.

3. Materials and methods

Fig. 3 shows the experimental set up. A centrifugal blower
recycles the SS through the drying zone and past the heating
electrical resistance. The drying zone is a cylindrical tube
of 0.3 m diameter and 0.4 m in length closed in its backside,
and with a glass lid covering the front side allowing the
inspection of samples as drying proceeds. Low pressure is
maintained with a vacuum pump, and an inlet purge steam
is used to supply vapour when process starts. The steam
recycle velocity is controlled through the blower rotational
speed, and the inlet temperature is measured in the drying
zone inlet tube and controlled by adjusting the heat supplied
by the electrical resistance.

This drier operates at approximately constant tempera-
ture, so in order to simulate the cooling effects an auxiliary
device was adapted (see Fig. 4). It consists of a cylindrical
insulating tube of 0.078 m i.d. placed into the drying zone
just over the drying zone inlet tube. Inside the tube there is
an aluminium can of 0.067 m diameter and 0.070 m height
filled with distilled water and supported by a metallic mesh.
The lower part of the can is isolated to control the evap-
oration and to prevent water spatter. There are only three
experimental measurements, temperatures Ti, To and Teq,
made with three thermocouples, one in the drying zones in-
let tube, another inside the can’s water, and the third one in
the upper part where the cold superheated steam leaves the
device.
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Fig. 4. Experimental device to simulate the cooling effect.

The can wall has negligible thermal resistance, hence
Um ≈ hm which makes parameter ϕ in Eq. (14) close to
unity. In drying foodstuffs the evaporated water gives place
to a growing dry layer, increasing the thermal resistance
which means decreasing Um. But for the initial stages of
the process, the situation is similar to that represented by
the can, so it can be assumed that ϕ = 1 and results are
applicable to any substance with the same shape.

The influence of radiant-heat transfer was calculated in
accordance to the Stefan–Boltzmann law, assuming the walls
are at the SS temperature, and the sample is at Teq. Results
show that radiant contribution is negligible, in the order of
2% of the convective component. On the other hand, since
the overall heat transfer coefficient was experimentally mea-
sured, the resulting parameter involves both contributions
(Kreith [4]), and the calculated evaporation rates are well
reproduced experimentally.

The experimental measurements were made at constant
inlet temperatures of T i ≈ 335, 343, 353, and 363 K, con-
stant inlet recycle velocity vi = 1.74 m s−1, and pressure
varying from P SS = 1×104 to 3×104 Pa. Results show that
experimental difference between inlet and outlet temperature
increase when inlet temperature increase, varying from 6 to
22 K at 1 × 104 Pa and from 0 to 7 K at 3 × 104 Pa. Dimen-
sionless number Nq is calculated by Eqs. (8) and (10), using
the experimental temperatures and reading Cv

p and �H from
thermodynamic steam tables. Results show that Nq increases
with inlet temperature and decreases with pressure, varying
from a minimum Nq = 0.296 (335 K and 2 × 104 Pa) to a
maximum Nq = 0.636 (363 K and 1×104 Pa). Finally, using
non-linear fitting, the experimental Nq values are represented

by empirical Eq. (19):

Nq = 1

430

Ti − 250

F 0.453
(19)

Since the can external surface has almost no thermal resis-
tance, the overall heat transfer coefficient is the same as
the external heat transfer coefficient (Um = hm), so that
Eq. (19) can be used in combination with Eq. (10) to find
hm, and then this information is applied in Eq. (15) to obtain
parameter N:

N = 0.547 (20)

This empirical datum, together with the SS heat capacity
and values of latent heat from steam tables, allow the calcu-
lation of both the drying rate velocity m (Eq. (9)), and the
optimum drying conditions Pop (Eq. (17)). Later, optimum
conditions are used to calculate parameter K (Eq. (18)). The
calculated K values do not change significantly, and under
our conditions it can be approximated using its mean value
K = 6.4 × 10−8 s2 m−2. Then, K being a constant, Eq. (17)
can be rewritten to allow the calculation of the maximum
drying rate without the previous knowledge of the optimum
operating conditions:

mmax = 6.4 × 10−8SiviPSS (21)

Even though this equation is only applicable to the particular
case of our experimental set up, it confirms the assumption
that parameter K can be assumed constant and, consequently,
that relationship between pressure and optimum drying rate
is linear.
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Fig. 5. Theoretical and approximated maximum drying rates as a function of working SS pressures.

Finally, Fig. 5 compares the theoretical and approximated
maximum drying rates. Black dots are the drying rates calcu-
lated with Eq. (9) using the experimental data, while curves
are the drying rates calculated with same Eq. (9), using con-
stant Ti and the empirical Eq. (19). The dotted and dashed
lines show the maximum drying rate as calculated with the-
oretical Eqs. (17) and (18), and with the linear Eq. (21),
respectively.

4. Conclusion

Drying with superheated steam has the characteristic that,
for all other conditions defined, does exist an optimum work-
ing pressure at which the drying rate is maximum. The
optimum conditions can be determined analytically by a
somehow tedious procedure. However, it has been shown
that the problem can be simplified assuming a linear rela-
tionship, which can be easily determined.

The theoretically derived linear relationship is shown as
Eq. (17), but since parameter K is expected to be relatively

constant, it can be calculated at a given intermediate point
and then used in a wide range of conditions. Then, Eq. (21)
is obtained, which is independent of the SS temperature
and can be applied without previous knowledge of optimum
conditions.

The main advantage of the latter procedure is that the
straight line turns to be the locus of the maxima shown
by each drying rate isotherm, hence the linear relationship
between maximum drying rate and pressure is an easy and
fast way to estimate the optimum performance of the drier.
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